Τετάρτη, 9 Αυγούστου 2017

Ένα σύστημα, η ορμή και η ενέργεια

Μια λεπτή σανίδα AB, μήκους 4m και μάζας Μ=1kg, ηρεμεί σε λείο οριζόντιο επίπεδο. Πάνω στη σανίδα και στο αριστερό άκρο της Α ηρεμεί ένα μικρό σώμα Σ, μάζας m=0,2kg. Κάποια στιγμή t0=0 το Σ δέχεται στιγμιαίο κτύπημα, με αποτέλεσμα να αποκτήσει αρχική ταχύτητα υ0=4m/s και να κινηθεί κατά μήκος της σανίδας.
Αν τη στιγμή t1=1s, το Σ έχει ταχύτητα υ1=2m/s, να βρεθούν τη χρονική αυτή στιγμή:
i) Η ταχύτητα της σανίδας.
ii) Οι ρυθμοί μεταβολής της ορμής, του σώματος Σ, της σανίδας και του συστήματος σώμα Σ-σανίδα.
iii) Η απόσταση του σώματος Σ από το άκρο Β της σανίδας.
iv) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Επαναλαμβάνουμε το πείραμα, αλλά τώρα η σανίδα αρχικά ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει τριβή με συντελεστές τριβής μs=μ=0,02. Ξανά για τη στιγμή t1=1s, να υπολογιστούν:
v) Οι ταχύτητες του Σ και της σανίδας.
vi) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Δίνεται g=10m/s2.

ή

Δευτέρα, 17 Ιουλίου 2017

Μια οριζόντια «οριζόντια βολή»

Στην κορυφή Α ενός ορθογώνιου τραπεζιού ΑΒΓΔ με πλευρές (ΑΒ)=2,75m και (ΑΔ)=1m ηρεμεί μια μικρή σφαίρα μάζας m=0,8 kg. Σε μια στιγμή δέχεται ένα κτύπημα με αποτέλεσμα να αποκτήσει οριζόντια ταχύτητα υο στη διεύθυνση της ΑΒ ενώ ταυτόχρονα ασκείται πάνω της μια σταθερή δύναμη F, μέτρου F=0,5N, η διεύθυνση της οποίας σχηματίζει γωνία θ με την διεύθυνση της ΑΒ, όπου ημθ=0,8 και συνθ=0,6. Η σφαίρα κινείται χωρίς τριβές και εγκαταλείπει το τραπέζι από την κορυφή Γ, όπως στο σχήμα.
i)  Επί πόσο χρόνο κινήθηκε πάνω στο τραπέζι η σφαίρα;
ii)  Να υπολογιστεί η αρχική ταχύτητα υο.
iii) Πόση ενέργεια μεταφέρθηκε στη σφαίρα μέσω του έργου της δύναμης F από το Α στο Γ και ποια η μέση ισχύς της ασκούμενης δύναμης F;
iv) Με ποιο ρυθμό η δύναμη F μεταφέρει ενέργεια στη σφαίρα τη στιγμή t=0 (αμέσως μόλις αρχίσει να κινείται) και ελάχιστα πριν εγκαταλείψει το τραπέζι;
ή


Σάββατο, 3 Ιουνίου 2017

Πόσο καλά εκμεταλλευόμαστε τις δυναμικές γραμμές;


Το πιο κάτω διάγραμμα δείχνει τις ηλεκτρικές δυναμικές γραμμές σε μια περιοχή ενός  ηλεκτροστατικού πεδίου που δημιουργείται από ακίνητα σημειακά ηλεκτρικά φορτία. Το διάγραμμα δεν αφορά ολόκληρο το πεδίο που δημιουργείται αλλά είναι μέρος του.
Πάνω στο διάγραμμα σημειώνονται σημεία (Α, Β, Γ, Δ, Ε, Η, Θ, Ι, Κ, και Λ). Τα σημεία που αναφέρονται δεν έχουν κάποιο ιδιαίτερο χαρακτηριστικό. 
Με βάση το πιο πάνω διάγραμμα των ηλεκτρικών δυναμικών γραμμών, να απαντήσετε στα πιο κάτω ερωτήματα.
α) Να αναφέρετε τον αριθμό των ηλεκτρικών φορτίων που υπάρχουν στο διάγραμμα, το πρόσημό τους. Ποιο φορτίο είναι μεγαλύτερο κατ΄ απόλυτη τιμή;
β)  Να προσδιορίσετε σε ποιο από τα σημεία Α, Ε, Ι, Κ και Η, το πεδίο έχει τη μεγαλύτερη ένταση.  Να κατατάξετε τα σημεία Α, Ε, Ι, Κ και Η, σε σχέση με την ένταση του ηλεκτρικού πεδίου, γράφοντας πρώτα το σημείο που έχει την μικρότερη ένταση.
γ) Να κατατάξετε τα σημεία Α, Β, Η, Θ και Κ, σε σχέση με το δυναμικό τους, γράφοντας πρώτα το σημείο που έχει το μεγαλύτερο δυναμικό.
δ) Να προσδιορίσετε την κατεύθυνση που θα ακολουθήσει ένα θετικό ηλεκτρικό φορτίο, αν αφεθεί ελεύθερο στο σημείο Θ, καθώς και την κατεύθυνση που θα ακολουθήσει ένα αρνητικό ηλεκτρικό φορτίο, αν αφεθεί ελεύθερο στο σημείο Δ.
ε) Λίγο πιο πάνω και δεξιά στον χώρο του πεδίου που εμφανίζεται στο διάγραμμα, από τη μορφή των ηλεκτρικών δυναμικών γραμμών, μπορούμε να καταλάβουμε ότι υπάρχει ακόμα ένα ηλεκτρικό φορτίο.  Να σχεδιάσετε το πάνω δεξιά κομμάτι του πεδίου. Να προσδιορίσετε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη θέση αυτού του ηλεκτρικού φορτίου και να καθορίσετε το είδος του, συμπληρώνοντας και τις δυναμικές γραμμές, στον χώρο μεταξύ του ηλεκτρικού φορτίου στη θέση Β και του ζητούμενο ηλεκτρικού φορτίου.
ή

Το παραπάνω θέμα είναι μια "διασκευή" ερωτήματος που μπήκε στον φετινό διαγωνισμό Φυσικής στην Κύπρο. Μπορείτε να το δείτε με κλικ εδώ.


Πέμπτη, 1 Ιουνίου 2017

Εξετάσεις ΜΑΪΟΥ 2017 στη ΦΥΣΙΚΗ θετ.πρ. Β


Σώμα μάζας m2=8 Kg είναι δεμένο με αβαρές νήμα μήκους L=2 m και εκτελεί ομαλή κυκλική κίνηση σε λείο, οριζόντιο επίπεδο. Το μέτρο της ταχύτητάς του είναι  u2=2 m/s. Κάποια στιγμή, και ενώ διέρχεται από τη θέση Α,  συγκρούεται  κεντρικά και πλαστικά με σώμα μάζας m1=2 Kg που κινείται με ταχύτητα u1 που έχει την ίδια κατεύθυνση με τη u2. Το συσσωμάτωμα που δημιουργείται έχει την ταχύτητα που απαιτείται ώστε το νήμα να σπάσει οριακά.Συνέχεια...

Μια κρούση σε ομογενές ηλεκτρικό πεδίο

Φορτισμένο σωματίδιο Σ1 με τιμή φορτίου q = –1,2·10-7C και μάζα m1=10-4kg βάλλεται με αρχική ταχύτητα υ0=4m/s κάθετα προς τις δυναμικές γραμμές ομογενούς ηλεκτρικού πεδίου έντασης Ε=104Ν/C μεγάλης έκτασης όπως φαίνεται στο σχήμα.
Αi) Υπολογίστε την επιτάχυνση που αποκτά το φορτίο Σ1.
Αii) Υπολογίστε τη μεταβολή της ορμής του φορτίου Σ1 και το ρυθμό μεταβολής της στο χρονικό διάστημα από 0 έως t1=2s
Τη χρονική στιγμή t1 αφόρτιστο σωματίδιο Σ2 τριπλάσιας μάζας του Σ1 κινείται προς τα αριστερά με οριζόντια ταχύτητα μέτρου υ2=(4√57)/3m/s και συγκρούεται πλαστικά με το φορτίο Σ1. Αν η κρούση διαρκεί Δt=10-3s και κατά τη διάρκειά της το σύστημα των φορτίων δεν αλλάζει θέση να:
Συνέχεια εδώ

Κυριακή, 21 Μαΐου 2017

Οι παραλλαγές πάνε και έρχονται…


Στο διπλανό κύκλωμα, το ιδανικό βολτόμετρο δείχνει ένδειξη V1=10V.
i) Αν αφαιρέσουμε το βολτόμετρο και το συνδέσουμε στα σημεία Κ και Λ, θα δείξει ένδειξη V2, όπου:
α) V2<V1,   β) V2=V1,  γ)  V2>V1.
ii) Συνδέουμε τα σημεία Κ και Λ μέσω ιδανικού αμπερομέτρου. Η ένδειξη του αμπερομέτρου Ι1 είναι:
α) Ι1<V1/R    β)  Ι1=V1/R,   γ) Ι1>V1/R.
iii) Παράλληλα στον αντιστάτη συνδέουμε δεύτερο ιδανικό αμπερόμετρο, παίρνοντας το 3ο κύκλωμα.
α) Ποια η ένδειξη του βολτομέτρου;
β) Ποιο αμπερόμετρο θα δείξει μεγαλύτερη ένδειξη;
ή


Σάββατο, 20 Μαΐου 2017

Γυμνά … καλώδια.

Στο διπλανό σχήμα βλέπουμε μία πηγή με εσωτερική αντίσταση r = 1 Ω, όπου ο θετικός της πόλος βρίσκεται σε δυναμικό V(+) = 50 V και ο αρνητικός πόλος σε δυναμικό V(–) = 30 V. Μεταξύ των σημείων Α και Β υπάρχει αντιστάτης με αντίσταση R = 4 Ω.
Α. Με ένα ιδανικό βολτόμετρο μετράμε την τάση VΑΒ και VΓΔ. Οι μετρήσεις έδειξαν ότι:
α. VΑΒ = 0 και VΓΔ = 50 V                 β. VΑΒ = 16 V και VΓΔ = 0                  γ. VΑΒ = 0 και VΓΔ = 20 V
B. Αν συνδέσουμε τον αρνητικό πόλο της πηγής με την γη (γείωση), δηλαδή θα έχουμε V(–) = 0, τότε η ένδειξη ...

   

Παρασκευή, 19 Μαΐου 2017

Η ένδειξη των αμπερομέτρων σε δυο κυκλώματα

Δίνονται τα κυκλώματα του διπλανού σχήματος, όπου στο (α) η πηγή δεν έχει εσωτερική αντίσταση, ενώ στο (β) έχει.
i)  Με τους διακόπτες ανοικτούς, ποιο αμπερόμετρο δείχνει μεγαλύτερη ένδειξη;
ii) Να εξετάσετε τι θα συμβεί με τις ενδείξεις των δύο αμπερομέτρων (θα αυξηθούν, θα μειωθούν ή θα παραμείνουν ίδιες), αν κλείσουμε τους  δυο διακόπτες, θεωρώντας ιδανικά τα αμπερόμετρα.
Να δικαιολογήσετε τις απαντήσεις σας.
ή


Τρίτη, 16 Μαΐου 2017

Ένα φορτίο εκτοξεύεται



Στο κέντρο Ο ενός κύκλου ακτίνας R είναι στερεωμένο ένα θετικό σημειακό φορτίο +Q. Από το σημείο Α του κύκλου εκτοξεύεται ένα φορτισμένο σωματίδιο, το οποίο θεωρούμε σημειακό φορτίο, με αρχική ταχύτητα υ0, όπως στο σχήμα, το οποίο ακολουθεί την διακεκομμένη κόκκινη γραμμή και περνά μετά από λίγο από τα σημεία Β και Γ, όπου (ΟΓ)=2R.
i) Ποιο το πρόσημο του φορτίου q1 που φέρει το σωματίδιο;
ii) Το έργο της δύναμης που ασκείται στο σωματίδιο από τη θέση Α μέχρι τη θέση Β, είναι:
α) Αρνητικό,   β) μηδέν,   γ) Θετικό
iii) Η ταχύτητα του σωματιδίου στη θέση Β έχει μέτρο υΒ, όπου:
α) υΒ0,    β) υΒ0,  γ) υΒ0
iv) Το έργο της δύναμης του πεδίου που ασκείται στο σωματίδιο, από το Α στο Γ είναι ίσο:
α) W=F∙R,    β) W=kQq1/R,    γ) W=kQq1/2R
Να δικαιολογήσετε τις απαντήσεις σας.
 ή


Σάββατο, 13 Μαΐου 2017

Το δυναμικό κατά μήκος μιας ευθείας


Το δυναμικό σε ένα βαρυτικό πεδίο μεταβάλλεται κατά μήκος μιας ευθείας x, όπου μπορεί να κινείται ένα σώμα, όπως στο σχήμα.
Ποιες προτάσεις είναι σωστές και γιατί;    
i) Αν ένα μικρό σώμα Σ, μάζας 1kg, αφεθεί στη θέση x=0, αυτό θα κινηθεί προς την θέση Α.
ii) Κατά την κίνησή του ένα σώμα κατά μήκος της ευθείας x, δεν έχει σταθερή επιτάχυνση.   
iii) Η θέση Α είναι θέση ασταθούς ισορροπίας του σώματος Σ.    
iv) Αν το σώμα Σ ηρεμεί στην θέση Α, χρειάζεται ενέργεια τουλάχιστον ίση με λ, για να απομακρυνθεί σε άπειρη απόσταση.        
ή


Πέμπτη, 11 Μαΐου 2017

Φωτοβολίες

Στα παρακάτω σχήματα που περιέχουν πηγή (ιδανική ή μη) δύο λαμπάκια Λ1 και Λ2 (με αντιστάσεις R1 και R2) που θεωρούμε ότι συμπεριφέρονται σαν ωμικοί αντιστάτες θέλουμε να βρούμε τι θα συμβεί ως προς την φωτοβολία του Λ1 αν καεί το Λ2. Η φωτοβολία είναι ανάλογη με το ρεύμα που διαρρέει κάθε λαμπάκι και στην περίπτωση που αυξάνεται το ρεύμα η αύξηση είναι τέτοια ώστε να μην καεί το άλλο λαμπάκι.

Πέμπτη, 4 Μαΐου 2017

Προσοχή! Χαμηλή βαρύτητα…

Mια ομάδα αστροναυτών προσγειώνεται σε αστεροειδή που κατευθύνεται προς τη Γη, με σκοπό να τον ανατινάξουν. Εξ’ αιτίας μιας εκροής ατμού από τρύπα στην επιφάνεια του αστεροειδή, ένας αστροναύτης εκτοξεύεται κατακόρυφα με ταχύτητα υ0 = 5m/s. Αν δεχτούμε τον αστεροειδή σφαιρικό με ακτίνα Rα = 2km και πυκνότητα ίση με την πυκνότητα της Γης, τι θα συμβεί στον αστροναύτη;




α) Θα επιστρέψει στο έδαφος
β) Θα φύγει στο διάστημα
γ) Θα γίνει δορυφόρος του αστεροειδή
Δίνονται η ακτίνα της Γης Rγ = 6400km και ο όγκος σφαίρας ακτίνας r, V = 4/3 πr3

ΑΠΑΝΤΗΣΗ

Πέμπτη, 27 Απριλίου 2017

Μια διάσπαση και μια περιστροφή

Ένα σώμα μάζας m, διασπάται σε δυο κομμάτια με μάζες m1 και m2. Οι μοναδικές δυνάμεις που ασκούνται στις μάζες είναι οι μεταξύ τους βαρυτικές και οι μάζες θεωρούνται σημειακές. Δίνεται η σταθερά της παγκόσμιας έλξης G.
i) Ποιος είναι ο λόγος m1/m2 ώστε η βαρυτική έλξη μεταξύ τους να είναι μέγιστη σε κάθε απόσταση;
α) ½                 β) 2                              γ) 1

ΑΠΑΝΤΗΣΗ

Τρίτη, 25 Απριλίου 2017

Πέρασε ένας χρόνος και το παιχνίδι διαρκεί! Β.


Μια μικρή σφαίρα μάζας m=0,5kg ηρεμεί στο άκρο κατακόρυφου νήματος, μήκους l=1,25m, το άλλο άκρο του οποίου έχει προσδεθεί σε σταθερό σημείο Ο. Μετακινούμε το σώμα φέρνοντάς το στη θέση Α όπου το νήμα είναι οριζόντιο (αλλά και τεντωμένο) και το αφήνουμε να κινηθεί. Μετά από λίγο το σώμα φτάνει με ταχύτητα υ1 στην αρχική του θέση Β, με το νήμα κατακόρυφο.
i) Να υπολογίστε την ταχύτητα υ1 της σφαίρας.
ii) Πόση είναι η τάση του νήματος στην θέση Β;
iii) Σε κατακόρυφη απόσταση y1= 0,8m από το Ο υπάρχει ένα καρφί, πάνω στο οποίο εκτρέπεται το νήμα, με αποτέλεσμα μετά από λίγο η σφαίρα να φτάνει στη θέση Γ, έχοντας κατακόρυφη ταχύτητα υ2.
α) Να βρεθεί το μέτρο της ταχύτητας υ2.
β) Ποιο είναι το μέτρο της τάσης του νήματος στη θέση Γ;
γ) Να υπολογιστεί η μεταβολή της ορμής της σφαίρας μεταξύ των θέσεων Β και Γ.
ή
Πέρασε ένας χρόνος και το παιχνίδι διαρκεί! Β

Δευτέρα, 10 Απριλίου 2017

Δυναμικό και ένταση στο βαρυτικό πεδίο της Γης.


Δίνεται η ακτίνα της Γης RΓ=6.400km, ενώ το μέτρο της επιτάχυνσης της βαρύτητας στην επιφάνεια της είναι g0=10m/s2 .
i) Να βρείτε το δυναμικό του πε­δίου βαρύτητας της Γης:
α)  στην επιφάνεια της Γης,
β)  σε ένα σημείο Ρ που βρίσκεται σε ύψος h = 3RΓ από την επιφάνεια της Γης, με δεδομένο ότι το δυναμικό είναι μηδέν σε άπειρη απόσταση από τη Γη.
ii) Να βρείτε το μέτρο της έντασης του πεδίου βαρύτητας της Γης στα σημεία Α και Β αν τα αντίστοιχα δυναμικά έχουν τιμές  VΑ = – 48∙106J/kg και  VΒ=-32∙106 J/kg.
iii) Ένα σώμα Σ μάζας 2kg, αφήνεται σε ένα από τα παραπάνω σημεία (Α ή Β) και μετά από ορισμένο χρόνο φτάνει στο άλλο. Αν οι αντίσταση του αέρα θεωρηθεί αμελητέα:
 α) Σε ποιο σημείο αφέθηκε, στο Α ή στο Β;
 β) Να υπολογιστεί το έργο του βάρους κατά την παραπάνω μετακίνηση.
 γ) Η ισχύς του βάρους τη στιγμή που φτάνει στο δεύτερο σημείο.
ή
Δυναμικό και ένταση  στο βαρυτικό πεδίο της Γης.

Τετάρτη, 29 Μαρτίου 2017

Οι τριβές ρίχνουν τον δορυφόρο


Ένας δορυφόρος μάζας 1tn, έχει τεθεί σε κυκλική τροχιά, με κέντρο το κέντρο της Γης, σε ύψος h1=3RΓ από την επιφάνειά της. Θεωρούμε τη δυναμική ενέργεια μηδενική σε άπειρη απόσταση από τη Γη, την οποία Γη, θεωρούμε ακίνητη και χωρίς άλλα ουράνια σώματα στην γειτονιά της.
i) Πόση είναι η μηχανική ενέργεια του δορυφόρου;
Μπορεί να θεωρούμε ότι ο δορυφόρος βρίσκεται σε μεγάλο ύψος, αλλά υπάρχει αέρας (ατμόσφαιρα) και στο ύψος αυτό, με αποτέλεσμα να ασκείται  δύναμη αντίστασης (τριβή), η οποία μειώνει τη μηχανική ενέργεια του δορυφόρου.
ii) Αν μετά από μια περιφορά ο δορυφόρος πέφτει κατά y1=4m, να υπολογίσετε τη μηχανική ενέργεια που μετατράπηκε σε θερμική, μέσω του έργου της αντίστασης.
iii) Η μείωση του ύψους συνεχίζεται, με αποτέλεσμα μετά από 10 χρόνια ο δορυφόρος να στρέφεται σε ύψος h2=RΓ από την επιφάνεια της Γης. Υποστηρίζεται ότι κατά την πτώση αυτή, αφού η ασκούμενη δύναμη (τριβή) αντιστέκεται στην κίνηση, ο δορυφόρος επιβραδύνεται. Να εξετάσετε αν αυτό είναι ή όχι σωστό.
iv) Να υπολογίσετε τη μηχανική ενέργεια που μετατρέπεται σε θερμική στη διάρκεια των 10 χρόνων πτώσης του δορυφόρου.
Δίνεται η επιτάχυνσης της βαρύτητας στην επιφάνεια της Γης gο=10m/s2, η ακτίνα της Γης RΓ=6.400km, ενώ το σχήμα της τροχιάς του δορυφόρου είναι σχεδόν κυκλική, κάθε χρονική στιγμή.
ή
Οι τριβές ρίχνουν τον δορυφόρο


Κυριακή, 26 Μαρτίου 2017

Η ανύψωση ενός δορυφόρου


Ένας τεχνητός δορυφόρος της Γης, ο «Παρατηρητής» μάζας 1tn, εκτελεί κυκλική τροχιά γύρω από τη Γη σε ύψος h1=RΓ από την επιφάνειά της. Θεωρείστε ότι η Γη είναι ακίνητη, χωρίς ατμόσφαιρα, η επιτάχυνση της βαρύτητας στην επιφάνειά της έχει τιμή gο=10m/s2, η ακτίνα της Γης RΓ=6.400km, ενώ το δυναμικό είναι μηδέν σε άπειρη απόσταση από το κέντρο της.
i)  Να υπολογιστεί η ταχύτητα του «Παρατηρητή» καθώς και η μηχανική του ενέργεια.
ii)  Κάποια στιγμή ο δορυφόρος θέτει σε λειτουργία τις τουρμπίνες του, με αποτέλεσμα να μεταφέρεται σε ύψος h2=2RΓ. Κατά τη μεταφορά αυτή, λόγω καύσης μέρους των καυσίμων, η μάζα μειώνεται με αποτέλεσμα τελικά ο «Παρατηρητής» να έχει μάζα m1=900kg. Αν η ενέργεια που μεταφέρθηκε στον «Παρατηρητή» μέχρι τη στιγμή που σβήνουν οι μηχανές του είναι 6,45∙109J ενώ τελικά η ταχύτητά του είναι παράλληλη με το έδαφος:
α) Να υπολογιστεί η ταχύτητα του «Παρατηρητή» (του εναπομείναντος τμήματος) στο ύψος h2.
β) Ο «Παρατηρητής»  στη συνέχεια:
1) θα εκτελέσει κυκλική τροχιά ακτίνας 3RΓ, γύρω από το κέντρο της Γης.
2) Θα διαφύγει από το βαρυτικό πεδίο της Γης.
3) Τίποτα από τα δύο αυτά ενδεχόμενα.
ή
Η ανύψωση ενός δορυφόρου

Σάββατο, 18 Μαρτίου 2017

Η Γη, η Εξωγή και η Περαγή.

Στην επιφάνεια της Γης η επιτάχυνση της βαρύτητας έχει τιμή gο=10m/s2.
i)  Να βρεθεί η επιτάχυνση που θα αποκτήσει ένα σώμα, αν αφεθεί να κινηθεί σε ένα σημείο Α, σε ύψος h=R, από την επιφάνειά της, όπου R η ακτίνα της Γης.
Σε ένα «κοντινό» μας ηλιακό σύστημα ανακαλύφτηκε ένας πλανήτης, η Εξωγή, ο οποίος έχει διπλάσια ακτίνα από την Γη. Μετά από μετρήσεις, διαπιστώθηκε ότι η Εξωγή έχει την ίδια ποιοτική και ποσοτική σύσταση με τονπλανήτη μας, συνεπώς και την ίδια (μέση) πυκνότητα με τη Γη.
ii) Πόση είναι η επιτάχυνση της βαρύτητας στην επιφάνεια της Εξωγής;
iii) Αν εξαιτίας «βαρυτικής κατάρρευσης» μειωθεί η ακτίνα της Εξωγής στο μισό, να υπολογιστούν:
 α) Η επιτάχυνση της βαρύτητας  στη νέα της επιφάνεια.
 β) Σε ένα σημείο Β, το οποίο βρίσκεται σε ύψος h=R από την επιφάνειά της.
iv) Σε έναν άλλο γαλαξία, βρέθηκε ένας άλλος πλανήτης με τα ίδια χαρακτηριστικά με τη Γη και την Εξωγή, η Περαγή. Έχει διπλάσια ακτίνα από τη Γη, ενώ η επιτάχυνση της βαρύτητας στην επιφάνειά της μετρήθηκε στην τιμή gπ=10m/s2. Η μέτρηση έγινε σε διάφορα σημεία, από όπου εξήχθη το συμπέρασμα ότι η κατανομή της μάζας είναι ομοιόμορφη (λέμε ότι έχουμε σφαιρική συμμετρία…). Για να ερμηνευθεί η τιμή της επιτάχυνσης αυτής, προτάθηκε το μοντέλο του σφαιρικού φλοιού, δηλαδή ότι η Περαγή είναι κούφια, έχοντας κενή μια σφαιρική περιοχή ακτίνας r, με κέντρο το κέντρο της, όπως στο σχήμα.
Να υπολογιστεί το πάχος του σφαιρικού φλοιού.
ή
Η Γη, η  Εξωγή και η Περαγή.