Σάββατο, 16 Σεπτεμβρίου 2017

Τρεις σφαίρες στην ταράτσα


Βρισκόμαστε  στην ταράτσα ενός κτιρίου και διαθέτουμε τρεις μικρές όμοιες σφαίρες Σ1, Σ2, και Σ3.
Εκτοξεύουμε οριζόντια τη σφαίρα Σ1. Ο χρόνος για να φτάσει στο έδαφος είναι t1.
Στη συνέχεια εκτοξεύουμε κατακόρυφα προς τα κάτω με αρχική ταχύτητα υ0 τη σφαίρα Σ2. Ο χρόνος για να φτάσει στο έδαφος στη βάση του κτιρίου είναι t2.

Tέλος εκτοξεύουμε την τρίτη σφαίρα Σ3 προς τα πάνω με την ίδια αρχική ταχύτητα υ0. Ο χρόνος για να φτάσει στο έδαφος είναι t3.
Αν η αντίσταση του αέρα είναι αμελητέα, οι χρόνοι t1, t2, t3 συνδέονται με τη σχέση

Απάντηση

Τρίτη, 12 Σεπτεμβρίου 2017

Μια σφαίρα παλινδρομεί ανάμεσα σε δύο κτίρια

Σώμα μάζας m εκτοξεύεται από την ταράτσα του κτιρίου 1 με οριζόντια ταχύτητα μέτρου υ0 στο
απέναντι κτίριο 2 που απέχει απόσταση d εκτελώντας οριζόντια βολή όπως φαίνεται στο σχήμα. Το σφαιρίδιο χτυπά ελαστικά στο κτίριο 2 στο σημείο Α έχοντας μετακινηθεί κατακόρυφα κατά y1 απο την αρχική θέση εκτόξευσης. Κατόπιν χτυπά ελαστικά στο σημείο Β του κτιρίου 1 και μετακινείται κατακόρυφα κατα y2 απο το σημείο Α. Οι επιφάνειες των κτιρίων είναι λείες.

i) Ο λόγος των κατακόρυφων αποστάσεων y1/y2 ισούται με: 

Τετάρτη, 9 Αυγούστου 2017

Ένα σύστημα, η ορμή και η ενέργεια

Μια λεπτή σανίδα AB, μήκους 4m και μάζας Μ=1kg, ηρεμεί σε λείο οριζόντιο επίπεδο. Πάνω στη σανίδα και στο αριστερό άκρο της Α ηρεμεί ένα μικρό σώμα Σ, μάζας m=0,2kg. Κάποια στιγμή t0=0 το Σ δέχεται στιγμιαίο κτύπημα, με αποτέλεσμα να αποκτήσει αρχική ταχύτητα υ0=4m/s και να κινηθεί κατά μήκος της σανίδας.
Αν τη στιγμή t1=1s, το Σ έχει ταχύτητα υ1=2m/s, να βρεθούν τη χρονική αυτή στιγμή:
i) Η ταχύτητα της σανίδας.
ii) Οι ρυθμοί μεταβολής της ορμής, του σώματος Σ, της σανίδας και του συστήματος σώμα Σ-σανίδα.
iii) Η απόσταση του σώματος Σ από το άκρο Β της σανίδας.
iv) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Επαναλαμβάνουμε το πείραμα, αλλά τώρα η σανίδα αρχικά ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει τριβή με συντελεστές τριβής μs=μ=0,02. Ξανά για τη στιγμή t1=1s, να υπολογιστούν:
v) Οι ταχύτητες του Σ και της σανίδας.
vi) Ο ρυθμός μεταβολής της κινητικής ενέργειας του σώματος Σ και της σανίδας, καθώς και ο ρυθμός με τον οποίο η μηχανική ενέργεια μετατρέπεται σε θερμική εξαιτίας των τριβών.
Δίνεται g=10m/s2.

ή

Δευτέρα, 17 Ιουλίου 2017

Μια οριζόντια «οριζόντια βολή»

Στην κορυφή Α ενός ορθογώνιου τραπεζιού ΑΒΓΔ με πλευρές (ΑΒ)=2,75m και (ΑΔ)=1m ηρεμεί μια μικρή σφαίρα μάζας m=0,8 kg. Σε μια στιγμή δέχεται ένα κτύπημα με αποτέλεσμα να αποκτήσει οριζόντια ταχύτητα υο στη διεύθυνση της ΑΒ ενώ ταυτόχρονα ασκείται πάνω της μια σταθερή δύναμη F, μέτρου F=0,5N, η διεύθυνση της οποίας σχηματίζει γωνία θ με την διεύθυνση της ΑΒ, όπου ημθ=0,8 και συνθ=0,6. Η σφαίρα κινείται χωρίς τριβές και εγκαταλείπει το τραπέζι από την κορυφή Γ, όπως στο σχήμα.
i)  Επί πόσο χρόνο κινήθηκε πάνω στο τραπέζι η σφαίρα;
ii)  Να υπολογιστεί η αρχική ταχύτητα υο.
iii) Πόση ενέργεια μεταφέρθηκε στη σφαίρα μέσω του έργου της δύναμης F από το Α στο Γ και ποια η μέση ισχύς της ασκούμενης δύναμης F;
iv) Με ποιο ρυθμό η δύναμη F μεταφέρει ενέργεια στη σφαίρα τη στιγμή t=0 (αμέσως μόλις αρχίσει να κινείται) και ελάχιστα πριν εγκαταλείψει το τραπέζι;
ή


Σάββατο, 3 Ιουνίου 2017

Πόσο καλά εκμεταλλευόμαστε τις δυναμικές γραμμές;


Το πιο κάτω διάγραμμα δείχνει τις ηλεκτρικές δυναμικές γραμμές σε μια περιοχή ενός  ηλεκτροστατικού πεδίου που δημιουργείται από ακίνητα σημειακά ηλεκτρικά φορτία. Το διάγραμμα δεν αφορά ολόκληρο το πεδίο που δημιουργείται αλλά είναι μέρος του.
Πάνω στο διάγραμμα σημειώνονται σημεία (Α, Β, Γ, Δ, Ε, Η, Θ, Ι, Κ, και Λ). Τα σημεία που αναφέρονται δεν έχουν κάποιο ιδιαίτερο χαρακτηριστικό. 
Με βάση το πιο πάνω διάγραμμα των ηλεκτρικών δυναμικών γραμμών, να απαντήσετε στα πιο κάτω ερωτήματα.
α) Να αναφέρετε τον αριθμό των ηλεκτρικών φορτίων που υπάρχουν στο διάγραμμα, το πρόσημό τους. Ποιο φορτίο είναι μεγαλύτερο κατ΄ απόλυτη τιμή;
β)  Να προσδιορίσετε σε ποιο από τα σημεία Α, Ε, Ι, Κ και Η, το πεδίο έχει τη μεγαλύτερη ένταση.  Να κατατάξετε τα σημεία Α, Ε, Ι, Κ και Η, σε σχέση με την ένταση του ηλεκτρικού πεδίου, γράφοντας πρώτα το σημείο που έχει την μικρότερη ένταση.
γ) Να κατατάξετε τα σημεία Α, Β, Η, Θ και Κ, σε σχέση με το δυναμικό τους, γράφοντας πρώτα το σημείο που έχει το μεγαλύτερο δυναμικό.
δ) Να προσδιορίσετε την κατεύθυνση που θα ακολουθήσει ένα θετικό ηλεκτρικό φορτίο, αν αφεθεί ελεύθερο στο σημείο Θ, καθώς και την κατεύθυνση που θα ακολουθήσει ένα αρνητικό ηλεκτρικό φορτίο, αν αφεθεί ελεύθερο στο σημείο Δ.
ε) Λίγο πιο πάνω και δεξιά στον χώρο του πεδίου που εμφανίζεται στο διάγραμμα, από τη μορφή των ηλεκτρικών δυναμικών γραμμών, μπορούμε να καταλάβουμε ότι υπάρχει ακόμα ένα ηλεκτρικό φορτίο.  Να σχεδιάσετε το πάνω δεξιά κομμάτι του πεδίου. Να προσδιορίσετε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη θέση αυτού του ηλεκτρικού φορτίου και να καθορίσετε το είδος του, συμπληρώνοντας και τις δυναμικές γραμμές, στον χώρο μεταξύ του ηλεκτρικού φορτίου στη θέση Β και του ζητούμενο ηλεκτρικού φορτίου.
ή

Το παραπάνω θέμα είναι μια "διασκευή" ερωτήματος που μπήκε στον φετινό διαγωνισμό Φυσικής στην Κύπρο. Μπορείτε να το δείτε με κλικ εδώ.


Πέμπτη, 1 Ιουνίου 2017

Εξετάσεις ΜΑΪΟΥ 2017 στη ΦΥΣΙΚΗ θετ.πρ. Β


Σώμα μάζας m2=8 Kg είναι δεμένο με αβαρές νήμα μήκους L=2 m και εκτελεί ομαλή κυκλική κίνηση σε λείο, οριζόντιο επίπεδο. Το μέτρο της ταχύτητάς του είναι  u2=2 m/s. Κάποια στιγμή, και ενώ διέρχεται από τη θέση Α,  συγκρούεται  κεντρικά και πλαστικά με σώμα μάζας m1=2 Kg που κινείται με ταχύτητα u1 που έχει την ίδια κατεύθυνση με τη u2. Το συσσωμάτωμα που δημιουργείται έχει την ταχύτητα που απαιτείται ώστε το νήμα να σπάσει οριακά.Συνέχεια...

Μια κρούση σε ομογενές ηλεκτρικό πεδίο

Φορτισμένο σωματίδιο Σ1 με τιμή φορτίου q = –1,2·10-7C και μάζα m1=10-4kg βάλλεται με αρχική ταχύτητα υ0=4m/s κάθετα προς τις δυναμικές γραμμές ομογενούς ηλεκτρικού πεδίου έντασης Ε=104Ν/C μεγάλης έκτασης όπως φαίνεται στο σχήμα.
Αi) Υπολογίστε την επιτάχυνση που αποκτά το φορτίο Σ1.
Αii) Υπολογίστε τη μεταβολή της ορμής του φορτίου Σ1 και το ρυθμό μεταβολής της στο χρονικό διάστημα από 0 έως t1=2s
Τη χρονική στιγμή t1 αφόρτιστο σωματίδιο Σ2 τριπλάσιας μάζας του Σ1 κινείται προς τα αριστερά με οριζόντια ταχύτητα μέτρου υ2=(4√57)/3m/s και συγκρούεται πλαστικά με το φορτίο Σ1. Αν η κρούση διαρκεί Δt=10-3s και κατά τη διάρκειά της το σύστημα των φορτίων δεν αλλάζει θέση να:
Συνέχεια εδώ

Κυριακή, 21 Μαΐου 2017

Οι παραλλαγές πάνε και έρχονται…


Στο διπλανό κύκλωμα, το ιδανικό βολτόμετρο δείχνει ένδειξη V1=10V.
i) Αν αφαιρέσουμε το βολτόμετρο και το συνδέσουμε στα σημεία Κ και Λ, θα δείξει ένδειξη V2, όπου:
α) V2<V1,   β) V2=V1,  γ)  V2>V1.
ii) Συνδέουμε τα σημεία Κ και Λ μέσω ιδανικού αμπερομέτρου. Η ένδειξη του αμπερομέτρου Ι1 είναι:
α) Ι1<V1/R    β)  Ι1=V1/R,   γ) Ι1>V1/R.
iii) Παράλληλα στον αντιστάτη συνδέουμε δεύτερο ιδανικό αμπερόμετρο, παίρνοντας το 3ο κύκλωμα.
α) Ποια η ένδειξη του βολτομέτρου;
β) Ποιο αμπερόμετρο θα δείξει μεγαλύτερη ένδειξη;
ή


Σάββατο, 20 Μαΐου 2017

Γυμνά … καλώδια.

Στο διπλανό σχήμα βλέπουμε μία πηγή με εσωτερική αντίσταση r = 1 Ω, όπου ο θετικός της πόλος βρίσκεται σε δυναμικό V(+) = 50 V και ο αρνητικός πόλος σε δυναμικό V(–) = 30 V. Μεταξύ των σημείων Α και Β υπάρχει αντιστάτης με αντίσταση R = 4 Ω.
Α. Με ένα ιδανικό βολτόμετρο μετράμε την τάση VΑΒ και VΓΔ. Οι μετρήσεις έδειξαν ότι:
α. VΑΒ = 0 και VΓΔ = 50 V                 β. VΑΒ = 16 V και VΓΔ = 0                  γ. VΑΒ = 0 και VΓΔ = 20 V
B. Αν συνδέσουμε τον αρνητικό πόλο της πηγής με την γη (γείωση), δηλαδή θα έχουμε V(–) = 0, τότε η ένδειξη ...

   

Παρασκευή, 19 Μαΐου 2017

Η ένδειξη των αμπερομέτρων σε δυο κυκλώματα

Δίνονται τα κυκλώματα του διπλανού σχήματος, όπου στο (α) η πηγή δεν έχει εσωτερική αντίσταση, ενώ στο (β) έχει.
i)  Με τους διακόπτες ανοικτούς, ποιο αμπερόμετρο δείχνει μεγαλύτερη ένδειξη;
ii) Να εξετάσετε τι θα συμβεί με τις ενδείξεις των δύο αμπερομέτρων (θα αυξηθούν, θα μειωθούν ή θα παραμείνουν ίδιες), αν κλείσουμε τους  δυο διακόπτες, θεωρώντας ιδανικά τα αμπερόμετρα.
Να δικαιολογήσετε τις απαντήσεις σας.
ή