Τρίτη, 21 Νοεμβρίου 2017

Μετά την επιτάχυνση μια πλαστική κρούση


Σε λείο οριζόντιο επίπεδο ηρεμεί ένα σώμα Α. Σε μια στιγμή t0=0 στο σώμα Α ασκείται μια σταθερή οριζόντια δύναμη μέτρου F=1,5Ν, με φορά προς τα δεξιά, μέχρι τη στιγμή t1=6s, όπου η δύναμη καταργείται. Τη στιγμή t2=7s το σώμα Α συγκρούεται πλαστικά με δεύτερο σώμα Β μάζας m2=1kg, το οποίο κινείται αντίθετα από το Α με ταχύτητα μέτρου 1m/s.
i)  Να υπολογιστεί η ορμή του σώματος Α ελάχιστα πριν την κρούση.
ii) Ποια η ορμή του συσσωματώματος αμέσως μετά την κρούση;
iii) Αν η ταχύτητα του συσσωματώματος μετά την κρούση έχει μέτρο V=2m/s, να βρεθούν:
α) Η μάζα του Α σώματος.
β) Η μεταβολή της ορμής κάθε σώματος, η οποία οφείλεται στην κρούση.
γ) Η απώλεια της κινητικής ενέργειας κατά την πλαστική κρούση μεταξύ των  δύο σωμάτων.
ή

Σάββατο, 18 Νοεμβρίου 2017

Σύστημα σωμάτων

Τα σημειακά σώματα Σ1 και Σ2 του διπλανού σχήματος έχουν μάζες ,m1=1Kg , m2=2Kg, εμφανίζουν συντελεστές τριβής μ12=0,2  με το οριζόντιο επίπεδο, ενώ είναι φορτισμένα με ομόσημα ηλεκτρικά φορτία συνεπώς απωθούνται. Αρχικά τα Σ1, Σ2 συγκρατούνται ακίνητα. Κάποια χρονική στιγμή (t0=0) το Σ1 εκτοξεύεται, προς τα δεξιά με ταχύτητα μέτρου υ0=10m/s ενώ το Σ2 αφήνεται ελεύθερο να κινηθεί. Θεωρούμε ότι κατά τη διάρκεια του φαινομένου τα φορτία των σωμάτων δε μεταβάλλονται και ότι οι δυνάμεις που οφείλονται σε αυτά είναι δυνάμεις Coulomb. Τη χρονική στιγμή t η ταχύτητα του Σ2 έχει μέτρο υ2=1m/s . Την ίδια χρονική στιγμή η ταχύτητα του Σ1 έχει μέτρο:
α. 1 m/s         β. 2 m/s         γ. 3 m/s

• Ποια από τις παραπάνω απαντήσεις είναι η σωστή;
• Δικαιολογήστε την επιλογή σας.

Απάντηση 

Πέμπτη, 16 Νοεμβρίου 2017

Ρίχνουμε την μπάλα, να πάει…


Στην προηγούμενη ανάρτηση:
 Ο αθλητής πέταγε και ξανάπιανε την μπάλα. Ας εξετάσουμε κάτι διαφορετικό τώρα.
Ένας αθλητής μάζας Μ=60kg στέκεται πάνω σε μία ακίνητη πλατφόρμα μάζας m1=30kg, η οποία μπορεί να κινηθεί σε λεία επιφάνεια. O αθλητής ρίχνει μια μπάλα μάζας m=0,5kg οριζόντια με αρχική ταχύτητα υ0=30m/s (ως προς το έδαφος). Το αποτέλεσμα είναι ο αθλητής να γλιστρήσει πάνω στην πλατφόρμα αποκτώντας ταχύτητα μέτρου 0,2m/s (ως προς το έδαφος), αμέσως μετά την εκτόξευση.
i)  Υποστηρίζεται η άποψη ότι δεν αναπτύσσονται δυνάμεις τριβής μεταξύ του αθλητή και της πλατφόρμας και για το λόγο αυτό γλίστρησε ο αθλητής πάνω της.  Να εξετάσετε αν αυτή είναι μια σωστή ή λανθασμένη άποψη.
ii)  Η πλατφόρμα θα αποκτήσει ταχύτητα:
α) προς τα δεξιά,     β) προς τα αριστερά.
Να δικαιολογήσετε την απάντησή σας.
iii) Να υπολογιστεί η ταχύτητα της πλατφόρμας, μόλις η μπάλα εγκαταλείπει το χέρι του αθλητή.
iv) Ποια θα είναι η ταχύτητα του αθλητή, μόλις πάψει να γλιστρά πάνω στην πλατφόρμα;
ή

Ρίχνουμε την μπάλα, να πάει…



Δευτέρα, 13 Νοεμβρίου 2017

Ρίχνοντας και πιάνοντας την μπάλα.


Ένας αθλητής στέκεται πάνω σε μία ακίνητη πλατφόρμα που μπορεί να κινηθεί σε λεία επιφάνεια. O αθλητής ρίχνει μια μπάλα προς το ακλόνητο πέτασμα στο άκρο της πλατφόρμας, με οριζόντια ταχύτητα ως προς το έδαφος υ1=20m/s . Η κατακόρυφη κίνηση της μπάλας εξαιτίας του βάρους της, μπορεί να αγνοηθεί. Καθώς η μπάλα χτυπά στο πέτασμα ανακρούεται με ταχύτητα μέτρου υ1΄=20m/s και επιστρέφει. Η μάζα του συστήματος αθλητή – πλατφόρμας είναι Μ=80kg ενώ της μπάλας m=0,5kg.
i)  Υποστηρίζεται ότι η πλατφόρμα μένει ακίνητη, μέχρι να κτυπήσει στο πέτασμα η μπάλα. Να εξηγήσετε αν αυτό είναι σωστό ή λανθασμένο.
ii) Να υπολογίσετε την ταχύτητα του συστήματος αθλητή-πλατφόρμα, μετά την κρούση της μπάλας με το πέτασμα.
iii) Εάν ο αθλητής πιάσει την μπάλα καθώς αυτή επιστρέφει προς το μέρος του, ποια θα είναι τελικά η ταχύτητα του συστήματος;
ή


Πέμπτη, 9 Νοεμβρίου 2017

Άλλο ένα σύστημα σωμάτων κινείται κατακόρυφα


Στα άκρα ενός ιδανικού ελατηρίου, σταθεράς k=100Ν/m και με φυσικό μήκος l0=60cm, έχουμε δέσει δυο μικρές σφαίρες Α και Β με μάζες m1=0,2kg και m2=0,3kg. Δένουμε τη σφαίρα Α με νήμα, μέσω του οποίου της ασκούμε μια κατακόρυφη μεταβλητή δύναμη F. Κάποια στιγμή t1 το ελατήριο έχει μήκος l1=68cm και οι σφαίρες ταχύτητες μέτρων υ1=5m/s και υ2=2m/s, όπως στο σχήμα, ενώ η δύναμη έχει μέτρο F=5Ν, το οποίο και διατηρούμε πλέον σταθερό. Για τη στιγμή t1:
i)  Να υπολογιστεί η ορμή κάθε μπάλας και η συνολική ορμή του συστήματος των δύο σφαιρών.
ii)  Να υπολογιστεί ο ρυθμός μεταβολής της ορμής κάθε σφαίρας καθώς και ο ρυθμός μεταβολής της ορμής του συστήματος.
iii) Να υπολογιστεί η συνολική ορμή του συστήματος τη στιγμή t2=t1+2s.
Δίνεται g=10m/s2, ενώ η αντίσταση του αέρα είναι αμελητέα.
ή


Δευτέρα, 6 Νοεμβρίου 2017

Η ορμή σε ένα σύστημα σωμάτων


Από ορισμένο ύψος αφήνεται μια μπάλα Α μάζας m1=0,5kg να πέσει ελεύθερα, ενώ ταυτόχρονα από το έδαφος εκτοξεύεται κατακόρυφα προς τα πάνω μια δεύτερη μπάλα μάζας m2=0,4kg. Μετά από λίγο, τη στιγμή t1, οι μπάλες έχουν ταχύτητες μέτρων υ1=4m/s και υ2=10m/s, όπως στο σχήμα.
i) Να υπολογιστεί η ορμή κάθε μπάλας και η συνολική ορμή του συστήματος των δύο σφαιρών.
ii) Να υπολογιστεί ο ρυθμός μεταβολής της ορμής κάθε σφαίρας καθώς και ο ρυθμός μεταβολής της ορμής του συστήματος.
iii) Να υπολογιστεί η συνολική ορμή του συστήματος τη στιγμή t2=t1+0,5s, ενώ οι μπάλες δεν έχουν φτάσει ακόμη στο έδαφος.
Δίνεται g=10m/s2, ενώ η αντίσταση του αέρα θεωρείται αμελητέα.
ή


Κυριακή, 5 Νοεμβρίου 2017

Από κατακόρυφη σε οριζόντια βολή

Το σημειακό αντικείμενο του σχήματος έχει μάζα m = 0,5kg και εκτοξεύεται κατακόρυφα προς τα πάνω από το σημείο Κ. Αφού ανέλθει κατά h = 2m, εισέρχεται εφαπτομενικά στο λείο ακλόνητο τεταρτοκύ­κλιο κέντρου Ο και ακτίνας R = 1m και ολισθαίνει από το Α ως το Β. Αφού εγκαταλείψει το τεταρτοκύκλιο στο σημείο Β, με οριζόντια ταχύτητα υΒ περνάει από το σημείο Γ, που βρίσκεται στο ίδιο οριζό­ντιο επίπεδο με τα σημεία Ο και Α, όπου ΟΓ = d = 3m.
α) Ποια είναι η ταχύτητα υΒ  του σώματος στο Β;
β) Με ποια ταχύτητα υ0 εκτοξεύτηκε και ποια είναι η ταχύτητα υΑ όταν περνάει από το Α;
γ) Ποια είναι η μεταβολή της ορμής του κατά την κίνηση στο τεταρτοκύκλιο;
δ) Βρείτε την κάθετη αντίδραση που ασκεί το τεταρτοκύκλιο στο σώμα όταν διέρχε­ται από τα σημεία Α και Β.
ε) Ποια είναι η ελάχιστη δυνατή τιμή της απόστασης ΟΓ = d, ώστε το αντικείμενο να ολισθαίνει σε ολόκληρη την επιφάνεια του τεταρτοκύκλιου;

Δίνεται g = 10m/s2.

ΑΠΑΝΤΗΣΗ(pdf)

ΑΠΑΝΤΗΣΗ(word)


Παρασκευή, 3 Νοεμβρίου 2017

Η ορμή ενός σώματος και η μεταβολή της


Ένα σώμα μάζας 2kg κινείται σε οριζόντιο επίπεδο, με το οποίο παρουσιάζει συντελεστή τριβής ολίσθησης μ=0,1, ενώ πάνω του ασκείται και οριζόντια δύναμη F. Στο σχήμα δίνεται η ορμή του σώματος σε συνάρτηση με το χρόνο.
i)  Να υπολογιστεί ο μέσος ρυθμός μεταβολής της ορμής από 0-2s, καθώς και ο αντίστοιχος στιγμιαίος ρυθμός τη στιγμή t1=0,8s.
ii) Να βρεθεί η δύναμη F η οποία ασκείται στο σώμα στο χρονικό διάστημα 0-2s.
iii) Να βρεθεί επίσης η ασκούμενη δύναμη F τη στιγμή t2=3s.
iv) Να υπολογισθεί το συνολικό έργο των δυνάμεων που ασκούνται στο σώμα από 0-3s.
v) Ποια η ισχύς της  δύναμης F, τις χρονικές στιγμές t1 και t2 και ποιος ο αντίστοιχος ρυθμός μεταβολής της κινητικής ενέργειας του σώματος, τις στιγμές αυτές;
ή


Δευτέρα, 30 Οκτωβρίου 2017

Μία πέτρα δένεται σε σχοινί

Ένα σώμα μάζας m, (πέτρα) δένεται σε ιδανικό σχοινί μήκους  L. Κάποια στιγμή ένας μαθητής θέτει το σώμα σε κατακόρυφη τροχιά ξεκινώντας από την κάτω κατακόρυφη θέση Α, όπως φαίνεται στο σχήμα 1. Αρχικά υπάρχει ένα μεταβατικό στάδιο όπου το χέρι του παιδιού δεν είναι σταθερό σε ένα σημείο ούτε η τροχιά απόλυτα κυκλική. Μετά από λίγο αποκαθίσταται κατακόρυφη κυκλική τροχιά σταθερής ακτίνας με το νήμα να είναι συνεχώς τεντωμένο και το κέντρο της τροχιάς να μπορεί να θεωρηθεί σταθερό. Αν οι δυνάμεις από τον αέρα δεν ληφθούν υπόψη ούτε υπάρχουν ελαστικές παραμορφώσεις στο σχοινί, να απαντήσετε στις ακόλουθες προτάσεις.
i)  Μόλις η τροχιά του σώματος σταθεροποιηθεί το νήμα είναι:
α) Συνεχώς κάθετο με την γραμμική ταχύτητα.

Πέμπτη, 26 Οκτωβρίου 2017

Οι συχνότητες σε δυο ΟΚΚ

Δυο σώματα Α και Β με μάζες m1=2m και m2=m αντίστοιχα, τα οποία θεωρούνται υλικά σημεία, κινούνται σε λείο οριζόντιο επίπεδο, δεμένα στα άκρα δύο νημάτων με μήκη l και 2l, διαγράφοντας κυκλικές τροχιές, με κέντρα Ο και Κ και με ταχύτητες σταθερού μέτρου, όπως στο σχήμα. Σε ορισμένο χρόνο Δt και τα δυο σώματα εκτελούν 22 πλήρεις περιστροφές.
i)  Για τις συχνότητες κίνησης f1 και f2  των σωμάτων Α και Β αντίστοιχα ισχύει:
α) f1< f2,     β) f1=f2,      γ) f1>f2.
ii) Για τις αντίστοιχες γωνιακές ταχύτητες ισχύει:
α) ω1 < ω2,    β) ω12,     γ) ω1> ω2.
iii) Για τα μέτρα των (γραμμικών) ταχυτήτων ισχύει:
α) υ1 < υ2,    β) υ12,     γ) υ12.
iv) Για τα αντίστοιχα μέτρα των επιταχύνσεων έχουμε:
α) α1 < α2,    β) α12,     γ) α1> α2.
v) Ενώ για τα μέτρα των συνισταμένων δυνάμεων:
α) F1 < F2,    β) F1=F2,     γ) F1> F2.
Να δικαιολογήσετε τις απαντήσεις σας.
ή